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ABSTRACT

This report presents a discussion of the progress made in the NASA/
NAVY Fiber Optic Control System Integration (FOCSI) program. This
program will culminate in open-loop flight tests of passive optical
sensors and associated electro-optics on an F-18 aircraft. Cur-
rently, the program is in the final stages of hardware fabrication
and environmental testing of the passive optical sensors and
electro-optics.

This program is a foundation for future Fly-by-Light (FBL) pro-
grams. The term Fly-by-Light is used to describe the utilization of
passive optical sensors and fiber optic data links for monitoring
and control of aircraft in which sensor and actuation signals are
transmitted optically. The benefits of this technology for advanced
aircraft include: improved reliability and reduced certification
cost due to greater immunity to EME (electromagnetic effects),
reduced harness volume and weight, elimination of short circuits
and sparking in wiring due to insulation deterioration, lower main-
tenance costs (fewer components), greater flexibility in databus
protocol and architecture, absence of ground loops and higher
operating temperatures for electrically passive optical sensors.

INTRODUCTION

Fly-by-Light is used to describe the utilization of passive optical
sensors and fiber optic data links for monitoring and control of
aircraft in which sensor and actuation signals are transmitted
optically. The benefits of this technology for advanced aircraft
include: improved reliability and reduced certification cost due to
greater immunity to EME (electromagnetic effects), reduced harness
volume and weight, elimination of short circuits and sparking in
wiring due to insulation deterioration, lower maintenance costs
(fewer components), greater flexibility in databus protocol and
architecture, absence of ground loops and higher operating
temperatures for electrically passive optical sensors. Table I
identifies the benefits of optical technology for aircraft.
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TABLE I

FEATURES	 BENEFITS

Immunity to electromagnetic 	 Improved reliability and re-
effects	 duced certification costs

Lower weight and volume for	 Increased payload and/or range
data links

No sparking or short circuits

No ground loops

Wavelength	 and	 temporal
multiplexing

Improved safety, no danger of
explosions or fire

Reduction of signal noise

Greater flexibility in design-
ing protocol and architecture

If optical technology is to replace electrical/mechanical technol-
ogy in control and monitoring functions of advanced aircraft, it
must be demonstrated that optical technology can provide one or all
of the following: solution of an existing problem; provide new
functional capability; lower direct operating or acquisition costs;
and/or improve safety. In addition, credible flight demonstrations
must be performed and substantial in-flight operating data on
components and optical subsystems must be obtained to establish
reliability data on optical components and systems. Standards for
connectors, fiber cables and interfaces along with specifications
for testing must be established. Retraining of maintenance person-
nel will also be required.

The ADOCS (Advanced Digital Optical Control System) (ref. 1) pro-
gram was the first large scale effort to demonstrate the use of
optical sensors in active flight control systems for helicopters.
Optical sensors providing information to the helicopter control
increased ballistic and electromagnetic survivability along with
reduced weight, volume and maintenance time. In this program
optical sensors measured the position of flight control surfaces
and hydraulic pressure. The optical sensors were integrated with
existing mechanical and hydraulic components. Flight tests were
conducted in 1987. Total flight time accumulated was over 126 hours
without any major failures of the optical sensors.

A feasibility study (ref. 2-3), initiated in 1985 by NASA/DOD,
concluded that fiber optic technology had the potential to improve
operational reliability of advanced aircraft because of the attri- 	 A,
butes listed in table I. A program, cofunded by NASA and the NAVY,
called FOCSI (Fiber Optic Control System Integration), evolved with
a design study (ref. 4-6) of the architecture for full optical
flight and propulsion control of aircraft. Following the design
study, a hardware development program was initiated to build,



environmentally test and fly (in piggyback fashion) a represen-
tative set of passive optical sensors for the flight and propulsion
system of an advanced F-18 aircraft (fig. 1). In addition to pro-
viding credible flight demonstrations of optical sensors and
optical components in an advanced aircraft environment, the FOCSI
program also involved a significant number of sensor vendors with
experience in this technology area. As a result of the flight tests
the program will provide information on the installation, mainten-
ance and operational problems in advanced aircraft. The remaining
part of this report will deal with the FOCSI hardware development
program.

FOCSI HARDWARE DEVELOPMENT

Prior to the flight tests with the full set of FOCSI hardware, some
preliminary flight tests were conducted with four passive, optical
sensors installed and flown on another research aircraft (F15 HIDEC
testbed) at NASA Dryden. This program was valuable to the vendors
who participated, enabling them to evaluate sensor performance
through comparison with the production sensors. The optical sensors
flown included: a compressor inlet temperature sensor, (which uses
fluorescent decay); PTO (power takeoff shaft) speed (which uses
Faraday magneto-optic effect); turbine discharge gas temperature
(which uses the blackbody radiation principle); and, PLA (power
lever angle, which uses a wavelength division multiplexed (WDM)
code plate to measure position). Preliminary flight test data for
these sensors are shown in figure 2. Generally the sensors per-
formed well and compared favorably with the production sensors.
These sensors have flown for a minimum of 6 hours with some of the
sensors collecting up to 12 hours of flight time. Valuable informa-
tion on installation problems and handling problems was obtained
from these preliminary tests.

OPTICAL HARDWARE FOR PROPULSION CONTROL

The FOCSI propulsion sensors are shown in figure 3. The type of
measurement along with the optical modulation technique and the
vendor supplying the sensor are also shown in this figure. Typical
sensors delivered for the flight tests are shown in figure 4. The
sensors were all environmentally tested to the MILSPEC requirements
for engine mounted hardware. Sensor range specifications are shown
in table II.

A wide variety of physical phenomena are employed in these sensors
for converting the measurand into an optical effect that can be
measured in an aircraft environment. Engine air inlet temperature
is measured by taking advantage of the temperature dependence of
the fluorescence decay rate of certain crystals. The compressor
inlet temperature sensor uses the Fabry Perot principle which
filters or attenuates (through destructive interference) particular
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wavelengths, depending on the optical path length of the Fabry
Perot cavity. The optical path length changes with temperature
through both a change in cavity spacing and index of refraction of
the material in the cavity. Fan speed is measured by using the
Pockels effect. The Pockels effect is the change in index of 	 '
refraction of certain birefringent crystals when subjected to an
electric field. The electric field variation is caused by coupling
into the- eddy current sensor used to measure fan speed. Compressor
speed is measured by using the Faraday effect. The Faraday effect
causes rotation of the polarization of incoming light when the
light passes through certain isotropic materials which have strong
magneto-optic characteristics. The optical speed sensor is located
in the alternator. The magnetic field variation results from the
rotor of the alternator. Turbine discharge gas temperature is
measured by detecting and measuring the amount of blackbody radia-
tion, predictable from Planck's law, from a material heated by the
hot gas. Actuator positions are measured by using WDM code plate or
WDM (2 lambda) analog ratio. These WDM sensors operate on part or
all of the spectrum of broad band light. The broad band light is
dispersed unto the modulating medium (i.e., code plate or variable
transmissive medium.

The sensors will be integrated with a centralized electro-optics
module. The electro-optic architecture (EOA) is discussed further
in the report.

OPTICAL HARDWARE FOR FLIGHT CONTROL

The FOCSI flight control sensors are shown in figure 5. Similar
information, as provided for the propulsion sensors on the vendors,
modulation techniques and parameters measured is provided in this
figure. These sensors were also environmentally tested to MILSPEC
requirements. Table II provides specifications for the sensor
ranges.

Most of the sensors in the flight control measure position. The
position sensors cover a number of different optical modulation
techniques (WDM digital, analog, etc.). Other flight control
sensors measure pressure using an analog modulation technique
called microbending and an air data temperature sensor which uses
the same fluorescence decay optical modulation technique as is used
for measuring engine inlet temperature.

Figure 6 is a drawing of the optical fiber runs in the aircraft
along with the number of connectors in each optical circuit.

Flight tests of the optical hardware will be performed on the F-18
System Research Aircraft (SRA) at NASA Dryden. These tests will be
piggyback tests of the optical hardware with the data from the
optical sensors compared to comparable production sensors.
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TABLE II

MEASUREMENT

Inlet temperature
Compressor inlet temperature
Compressor speed
Fan speed
Compressor variable geometry
Fan variable geometry
Turbine exhaust gas temperature
Exhaust nozzle position
Stabilizer position
Rudder position
Trailing edge flap (TEF)
Leading edge flap (LEF)
Throttle lever angle (TLA)
Nose wheel steering (NWS)
Total pressure (air data)
Air data temperature
Pitch stick position
Rudder pedal position

SPECIFICATIONS FOR RANGES

-65 to 300 degrees F
-65 to 540 degrees F
817 to 18553 rpm +/- .1% FS
3981 to 15267 rpm +/- .1% FS
-3.5 to 52.5 degrees
0 to 2.7 inches
700 to 2500 degrees F
0 to 6.923 inches
+/- 3.56 inches
+/- .665 inches
+/- 4.05 inches
+/- 67.5 degrees
+/- 65 degrees
+/- 75 degrees
1.25 to 80 inches Hg
-100 to 450 degrees F
+2.02 to -1.01 inches
+/- .75 inches

ELECTRO-OPTIC ARCHITECTURE FOR PROPULSION AND FLIGHT SENSORS

One objective of this program is to develop a standard interface
for the optical system. The sensor and electro-optics designers are
required to meet the interface specifications for wavelength,
optical power and data rates. The standard interface allows the
electro-optics to handle any type of optical sensor, attached to
any connector port, requiring only a change in the software to
accommodate the sensors. Table III identifies the cards and card
functions for the electro-optics module.

TABLE III

Decode CPU

CARD FUNCTION

Supplies broadband light
(750nm-950nm) to the sensors.
Uses two LED's

Charge-coupled device (CCD)
optical to electrical converter

Accepts electrical signals from
optical receiver card and con-
ditions data for CPU

Processes the data and converts
to engineering units

ELECTRO-OPTICS CARD

A/D optical source card

A/D optical receiver

Data acquisition card (DAC)
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Time rate of decay (TRD)	 Custom card for fluorescence
sensor

EOA CPU	 Conditions and formats data for
1553 bus

Converts the electrical 1553 to
1553/1773 converter	 optical 1773 data format

Power supply	 Supplies power to all modules

The flight control electro-optics module and cards installed in the
module are shown in figure 7 (a). A diagram of the electro-optics
is shown in figure 7 (b). The optical source card contains 10 LED
pairs (each pair has a 150 nm bandwidth). The LED's feed a 10 x 10
port passive coupler connected to optical fibers, which are in turn
connected to the sensors. The large optical bandwidth is required
by the digital code plate sensors. A smaller bandwidth source could
accommodate the other sensors. The optical sources operate continu-
ously 9 millisec (ms) on and 1 ms off. The 1 ms off period is
required to clock out the data from the CCD array. The optical
receiver consists of a 2-dimensional charge-coupled device (CCD)
which is self-scanning. The optical signal from each sensor is
focused on a specific location of the 2-dimensional array. Sensor
1 occupies row 1 followed by 3 blank rows, followed by sensor #2
with 3 blank rows, etc. The sensor signals enter the optical
receiver and are focused unto the CCD array. Prior to focussing,
each optical signal passes through a dispersing element that sepa-
rates the 150 nm modulated signal into as many as fifteen 10 nm
stripes. The CCD array output is processed and formatted by the CPU
and passed to the 1553/1773 processor card which sends the signals
to the data collection system onboard the aircraft. The fluores-
cence sensor requires a separate sensor /electro-optics card to
provide a different specific wavelength range and to process the
resulting optical signal. In the propulsion EOA, separate cards for
the fluorescence, blackbody and speed sensors are required.

The propulsion EOA has separate electro-optics cards for the speed
sensors, exhaust gas temperature sensor and inlet temperature
sensor. The remaining sensors interface with the same EOA as used
in the flight control.

The configuration for collection of the data on the FOCSI aircraft
is shown in figure 8. Each EOA provides a 1553 output data format
which is converted to the optically equivalent 1773 format and is
then transmitted to the aircraft data collection system where it is
converted back to the 1553 format for recording. The electro-optics
used for the conversion between 1553/1773 and 1773/1553 formats is
being provided to the FOCSI program by the Navy. The hardware is a
product of the Navy SHARP program (Standard Hardware for Avionics
Research Program). The optical signals can then be compared to the
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production electrical sensors which are located, in most cases
adjacent to the optical sensors.

CONCLUDING REMARKS

Successful transition of Fly-by-Light technology to production
aircraft will depend on flight demonstrations similar to those in
the FOCSI program. Significant in-service time is required to
establish a reasonable history for the technology. The true bene-
fits of this technology and it's impact on safety and aircraft
costs have yet to be evaluated. However, continued testing and
continuous improvement in components must continue or this technol-
ogy may never achieve it's full potential. The experience obtained
from this program is valuable in promoting optical technology
transfer to production aircraft, both military and commercial. This
program will yield valuable information on the installation, main-
tenance, troubleshooting and installed testing which will be
transferred to the aircraft industry. This program also involves a
large number of vendors who have gained valuable experience in
packaging their particular product for an aircraft environment.

Problems of standardization of optical components as well as
production challenges associated with integrating optical systems
into aircraft need to be addressed. To complete this phase of the
Fly-by-Light program, a closed-loop flight demonstration of all-
optical closed-loop operation of one or more control surfaces and
the propulsion system needs to be performed. A demonstration of
active control will establish the true credibility of this
technology.
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